Lab 6 - SQL Server Stored Procedures and NoSQL Install
Part I – SQL Stored Procedures
(Introduction) – for Lab 6, create each Stored Procedure shown in the examples, and create 2 additional ones that do anything that you like. Make sure to paste the SQL code for both of the Stored Procedures, as well as the code to create it.

Overview
A stored procedure is nothing more than prepared SQL code that you save so you can reuse the code over and over again. So if you think about a query that you write over and over again, instead of having to write that query each time you would save it as a stored procedure and then just call the stored procedure to execute the SQL code that you saved as part of the stored procedure.

In addition to running the same SQL code over and over again you also have the ability to pass parameters to the stored procedure, so depending on what the need is the stored procedure can act accordingly based on the parameter values that were passed.

There are various options that can be used to create stored procedures. In these next few topics we will discuss creating a simple stored procedure to more advanced options that can be used when creating stored procedures.

Before you create a stored procedure you need to know what your end result is, whether you are selecting data, inserting data, etc..

In this simple example we will just select all data from the Person.Address table that is stored in the AdventureWorks database.

So the simple T-SQL code would be as follows which will return all rows from this table.
 (
SELECT * FROM AdventureWorks.Person.Address
)

To create a stored procedure to do this the code would look like this:
 (
CREATE PROCEDURE uspGetAddress AS
SELECT * FROM AdventureWorks.Person.Address GO
)

To call the procedure to return the contents from the table specified, the code would be:
 (
EXEC uspGetAddress
--or just simply uspGetAddress
)

When creating a stored procedure you can either use CREATE PROCEDURE or CREATE PROC. After the stored procedure name you need to use the keyword "AS" and then the rest is just the regular SQL code that you would normally execute.

On thing to note is that you cannot use the keyword "GO" in the stored procedure. Once the SQL Server compiler sees "GO" it assumes it is the end of the batch.

Also, you can not change database context within the stored procedure such as using "USE dbName" the reason for this is because this would be a separate batch and a stored procedure is a collection of only one batch of statements.

Creating Stored Procedures with Multiple Parameters
Just like you have the ability to use parameters with your SQL code you can also setup your stored procedures to except one or more parameter values.

One Parameter

In this example we will query the Person.Address table from the AdventureWorks database, but instead of getting back all records we will limit it to just a particular city. This example assumes there will be an exact match on the City value that is passed.
 (
CREATE PROCEDURE uspGetAddress @City nvarchar(30) AS
SELECT *
FROM AdventureWorks.Person.Address WHERE City = @City
GO
)

To call this stored procedure we would execute it as follows:
 (
EXEC uspGetAddress @City = 'New York'
)

We can also do the same thing, but allow the users to give us a starting point to search the data. Here we can change the "=" to a LIKE and use the "%" wildcard.
 (
CREATE PROCEDURE uspGetAddress @City nvarchar(30) AS
SELECT *
FROM AdventureWorks.Person.Address WHERE City LIKE @City + '%'
GO
)

In both of the proceeding examples it assumes that a parameter value will always be passed. If you try to execute the procedure without passing a parameter value you will get an error message such as the following:
 (
Msg 201, Level 16, State 4, Procedure uspGetAddress, Line 0
Procedure or function 'uspGetAddress' expects parameter '@City', which was not supplied.
)

Default Parameter Values

In most cases it is always a good practice to pass in all parameter values, but sometimes it is not possible. So in this example we use the NULL option to allow you to not pass in a parameter value. If we create and run this stored procedure as is it will not return any data, because it is looking for any City values that equal NULL.
 (
CREATE PROCEDURE uspGetAddress @City nvarchar(30) = NULL AS
SELECT *
FROM AdventureWorks.Person.Address
)

 (
WHERE City = @City GO
)

We could change this stored procedure and use the ISNULL function to get around this. So if a value is passed it will use the value to narrow the result set and if a value is not passed it will return all records. (Note: if the City column has NULL values this will not include these values. You will have to add additional logic for City IS NULL)
 (
CREATE PROCEDURE uspGetAddress @City nvarchar(30) = NULL AS
SELECT *
FROM AdventureWorks.Person.Address WHERE City = ISNULL(@City,City)
GO
)

Multiple Parameters

Setting up multiple parameters is very easy to do. You just need to list each parameter and the data type separated by a comma as shown below.
 (
CREATE PROCEDURE uspGetAddress @City nvarchar(30) = NULL, @AddressLine1 nvarchar(60) = NULL
AS SELECT

*
FROM AdventureWorks.Person.Address WHERE City = ISNULL(@City,City)
AND AddressLine1 LIKE '%' + ISNULL(@AddressLine1 ,AddressLine1) + '%' GO
)

To execute this you could do any of the following:
 (
EXEC uspGetAddress @City = 'Calgary'
--or
EXEC uspGetAddress @City = 'Calgary', @AddressLine1 = 'A'
--or
EXEC uspGetAddress @AddressLine1 = 'Acardia'
-- etc...
)

To modify a stored procedure in Management Studio

1. In Object Explorer, connect to an instance of Database Engine and then expand that instance.
2. Expand Databases, expand the database in which the procedure belongs, and then expand Programmability.
3. Expand Stored Procedures, right-click the procedure to modify, and then click Modify.
4. Modify the text of the stored procedure.
5. To test the syntax, on the Query menu, click Parse.
6. To save the modifications to the procedure definition, on the Query menu, click Execute.
7. To save the updated procedure definition as a Transact-SQL script, on the File menu, click Save As. Accept the file name or replace it with a new name, and then click Save.

Part II – NoSQL Install (Couchbase)

For the second part of Lab 6, you will be downloading and installing the NoSQL Couchbase, found at http://www.couchbase.com/nosql-databases/downloads (Links to an external site.). (20 pts).
Here is the file to download and install on your Windows Computer. If you are running Linux or another operating system then go to and download the version that will work for your system.

[image:]Windows version - couchbase-server-community_4.0.0-windows_amd64.exe
Watch this video to see how Couchbase works - https://www.youtube.com/watch?v=uBIJBmc9FWA (Links to an external site.)

Take screen shots of the installation of the software on your computer, and when it is up and running.
Go to http://training.couchbase.com/online (Links to an external site.) and watch the 2 videos for All Audiences (you can watch others if you like).
image1.png

